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Multi-Output System Identification using
Evolutionary Programming

B.L. Andersen, W.C. Page, and J.R. McDonnell
Naval Ocean Systems Center
San Diego, CA

Abstract

Evolutionary programming (EP) has been
demonstrated to be an effective method of system
identification of single-input-single-output (SISO)
systems. This paper investigates the use of EP in
system identification of single-input-muiti-output
(SIMO) systems. EP is used to identify parameters
of a linear, time-invariant system. Specifically, this
paper examines the identification of SIMO systems
whose measurements cau contain different amounts of
noise. A cost function is proposed to take into
account disparate noisy observations.

I. Introduction

System identification 1s the process of
developing an accurate model of a dynamic system.
This involves selecting the appropriate model
structure and choosing the model parameters which
optimize an objective function. The usual approach
taken in system identification is to assume a model
structure based on the process physics and then to
determine the model parameters. Oftentimes,
nonlinear models are linearized so that an appropriate
state space formulation may be used.

Typically, methods of system identification
involve minimizing the objective function using
gradient descent techniques. Use of the gradient may
result in the identified parameters being only locally
optimal. Continuity constraints are another limitation
associated with pure gradient search techniques. A
Kalman filter approach is given in [1] along with
cautions on its application to system identification.
Many algorithms heve been proposed which attempt
to alleviate the inherent problems associated with
gradient methods. Recent approaches have included
simulated annealing, genetic algorithms, neural
networks and evolutionary programming. The latter
method has proven extremely successful for function
optimization.

Evolutionary programming (EP) has been
successfully applied to the problem of system
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identification. Fogel [2} has proposed the use of EP
in system identification for evolving ARMAX process
coefficients. His  investigations  extend o
simultancous  parameter  and  model  structure
estimation. This paper extends the work on SISO
systems to SIMO systems. The extension to mult-
input, multi-output (MIMO) systems 15 obvious.

Identification of a SIMO system could be
divided into 1dentifying a set of SISO system transfer
functions between the input and each of the outputs.
However, each of these transfer functions would be
identified using only the measurements of its output
and not the full set of chservations which containg
more information.  Also, it is not clear how one
might combine these individual transter functions
with parameter estimates of varying degrees of
uncertainty into one combined system model that
would be required to control all the states of the
system.

The remainder of this paper is organized as
follows. Section [l contains an overview of the EP
paradigm. Section [l formulates EP for SIMO
system identification and describes the model
structure. Section 1V presents a linear, ime-invanant
system thai is used for commter experiments.
Sectibn V discusses the results and Section Vi
provides a summary of the results and conclusions.

II. Evolutionary Programming

EP is a parallel stochastic search techaique
that maps natural evolution to an effective multi-agent
search strategy. This search technique 1+ not based
on gradient methods and 1s therefore not susceptible
to entrapment in local minima. Search by simulated
evolution was first described by Fogel [3]. This
investigation follows the search stratery outhned in

Q
Fogel [2] and described by the sequence befow ;
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Figure 1. Evolutionary programming
pararmeler estimation block diagram.

3. Mutate each element in the population by a
N(0,0) random variable, where o is
proportional to the fitness.

4, Assign a new fitness score to each element
of the population.

S. Hold a stochastic competiticn between the
members of the population.

6. Rank the members of the population
according to the results (sumber of "wins")
of step 5.

7. Repeat step 3 with the highest rapked N

members from the population.

This algorithm is applied to system identification in
the following section.

II1. EP for System Identification

The linear time-invariant SIMO structure is
assumed to be of the form

x(k+1) = Fx(k)+Gu(k)

ytk) = Hx(k)+v(k)

where x(k) 1s the state vector of length n, u(k) is the
input, y(k) 1s the vector of measurements of length /,
v(k) is the vector of MN{2,6,) tudeurctiuent nose. i3
the system matrix, G s the tnput weighting matrix

and H 1s the measurement scaling matrix.  The block
diagram for estimating parameters using EP is shown
in Figure 1.

The vectors to be evolved will consist of the
elements of the F and G matrices. The H
{measurement) matrix will not be evolved because
finding all three of the matrices is an underdefined
problem since an infinite number of combinations of
F, G and H matnces apply to the same system
dynamics. For this reason, the measurements will be
assigned to the first  states of the system. This
results in an H matnix of the form

H = {1111 { le(n—l')]

Given this formulation, the method of
applying EP 1o the identification problem is
straightforward. The remaining issues to be resolved
are the mutation strategy and the objective function.

Two mutation strategies were investigated.
The first incorporates a standard deviation of the
mutation for each vector that is linearly proportional
to the fitness score as suggested by Fogel {2]. This
results in the size of the mutations decreasing as the
population approaches the optimum value. In
addition to ensuring convergence, this strategy also
assures an effective search by allowing larger
mutations for elements that have poor fitness scores.
Atmar [4] suggests a vanety of mechanisms to
accelerate the search process.

. The second mutation strategy investigated is
based ‘On the number of iterations. The mutation o
any element in the vector can be described by the
perturbation

-cetk

o = ue

where u 1s a N(,0) random vanable (r.v.), 7 is a
U[0,1] r.v., a is a constant and k is the generation
number. This mutation is a function of the number
of iterations only. A random walk is maintained over
a high number of generations while still preserving
the capability of infinitesimal perturbations to achieve
optimum values as k increases. Reasonable results
were obtained using this mutation strategy for
cptimizing mobile manipulator configurations |5].
The objective function must be carefully
chosen for this search. Not only wall the
measurements generally e of different wits, bucihe
amount ot confidence in each measurement may
differ due to sensor characteristics. A cost function




has been formulated to take into account disparate
sensor noise and the difference between state
estimates and observations. The error vector between
observation and estimate is given by

y=y7y

where y is the observation and y is the estimate. The
cost function incorporates sensor uncertainty (noise)
using the diagonal standard deviation matrix
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where ¢, corresponds to the noise characteristics of
the ™ sensor. The cost associated with each
parameter estimate can be described as

where the variances are selected according to sensor
specifications, n is the length of the error vector and
R = Q7 or the identity matrix / depending on the
experiment. Using R = ' accomplishes two
things. First, it allows the cost to be a dimensionless
quantity. Second, it scales each measurement by the
amount of confidence in its accuracy. If the
measurement is noisy, its contribution to the cost
function is reduced since the prediction errors could
be due primarily to measurement noise. If an
observation is relatively noise-free, its contribution to
the cost function will be large since the error is due
primarily to estimation errors, assuming the model
structure 1s correct. For these trials, it 1s assumed
that the vanances are constant but not necessarily
equal. If the vanances are equal, then the cost
function is simply scaled by this magnitude. Using
R = I and scaling the cost function will yield the
samne results.

IV. Simulated System

A simple second-order system based on
spring-mass-damper dynamics was used for computer
expenments.  Parameters were chosen so that the
system was cntically damped. The continuous state
equations can be wntten as

0 1 4
X = X ¢ u
-1 -2 !
10
= X +
Y 01 ’

The equivalent discretized state-space formulation,
assuming a zero-order-hold and a sample rate of
T=0.05 sec, is given by

0.9988 0.0476 0.0012
xtk+1) = x(k) + u(k)
-0.0476 0.9037 0.0476

k) = Lo & [3
RN M ECRO

The forcing function is ensured to be persistently
exciting by defining uk} as an r.v. with a uniform
distribition. The system was propagated forward
100-200 time steps for each simulation from an initial
state randomly chosen from a U{-1,1] distribution.

V. Results

Simulations were conducted using both
mutation strategies. In general, the second mutation
strategy outperformed the first. The reason for this
is still under investigation. The state variables had to
be constramned to prevent numeric overflow. This 1s
not unreasonable given that the time integration of an
unstable system 1s not bounded. However, it does
have imphications in system identification of unstable
plants.

The first experiment tor the second mutation
strategy used numencally equal measurement nnise
terins with N(0,0.03) statistics and «=0.01. The
resulting parameters are given in Table | under
experiment 1. The average percentage error for all




parameters is approximately 8%.

The magmtude of the forcing function was
increased tenfold in an attempt to obtain better system
identification. The parameters resulting from this
experiment are given in Table | in the experiment 2
column. As expected, these parameters are have a
lower overall average error than those obtained in
experiment 1. For this case, the average overall
parameter error is roughly 3.14%.

Figure 2 shows the mean and best population
scores using the second mutation strategy. The cost
function is simply the mean sum squared error (MSE)
of both observations. At roughly 300 iterations the
identification process converged. This run had
equivalent noise statistics on each measurement.
Figure 3 illustrates the convergence of the first
parameter (f;,) in the highest ranked F matrix. The
other parameters converge in a similar fashion.

An experiment was conducted to compare
the effect of the two cost functions using the second
mutation strategy. The standard deviation of the
position measurement noise was 0.01 and the
standard deviation of the velocity measurement noise
was 0.05. In both cases o was set at 0.05. The best
values of the parameters are shown in Table [. The
parameter values under the experiment 3 heading are
for the cost function that included the variance term
(R = Q'Q). The parameter values given under the
experiment 4 heading are for R equal to the identity
matrix. The experiment that incorporated a cost
function without the variance term unexpectedly had
better results than the experiment which incorporated
a confidence weighting term.  The reasons for this
result are still betng investigated.

VI. Conclusions

EP is a powerful search technique that can
be applied to system identification. This research has
demonstrated that EP can be extended to identify
linear SIMO systems of known order. The extension
to 1dentification of MIMO systems is obvious. It is
also clear that the scaling of the cost function must be
chosen carefully to account for disparate sensor data
and measurement noise. The results given in this
work have yet to be statistically verified and therefore
should not be generalized. Investigations on the
algonthmic properties of EP are being continued for
validation in further experiments.

The formulation described here 1s a general
one for the identificatiuo of state-space models, but
there are stll addittional  considerations to  be

addressed.  First, the model 1gnored process noise,
the terms that account for differences from the actual
dynamic equations. Second, this work assumed that
the order of the system is known. To identify the
order of the model as well as the parameters, a muit-
dimensional  equivalent of Akaike’s information
criterion (AIC) or mmimum defining length (MDL)
principle similar to that used by Fogel [6] for neural
networks must be developed.

The application of EP for adaptive control i3
readily apparent. Issues to be addressed in using EP
for adaptive control pertain to the bandwidth of the
process being controlled.  That i3, of course,
assurung a traditional adaptive control architecture.
EP could be implemented in an arrangement such that
system 1dentification would not have to be explicit.
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Figure 3. Evolution of parameter f,,.

Para- Actual
meters values

Final Best Value Statistics

1* Experiment

2™ Experiment

3" Experiment

4* Experiment

value %error value %error value Joerror value Foerror
f,, 0.9988 | 0.9965 0.23 0.9986 0.02 1.0193 2.05 0.9973 0.15
fiz 0.0476 | 0.0527 10.7 0.0480 0.84 0.1015 113.2 0.0422 11.3
£, -0.0476 | -0.0449 5.67 -0.0481 1.05 | -0.0745 | 56.51 -0.504 5.88
)99 0.9037 | 0.90163 0.23 0.9033 0.04 h 0.8315 7.99 0.9062 0.28
g 0.0012 | 0.0009 25.0 0.0010 16.7 -0.0152 1367 0.0009 25.0
g 0.0476 | 0.0507 6.51 0.0477 0.2! 0.0480 0.84 0.0440 7.56

Table 1. Comparison of final value results of experiments and actual parameters.




